

Thermal Storage in Smart PCM Walls:

An enhanced and controlled discharge power by forced convection

Haute école d'ingénierie et d'architecture Fribourg Hochschule für Technik und Architektur Freiburg

Presented by Antoine Boss Authors: J. Robadey, R. Wegmüller, A. Chiriatti, G. Magnin, E.L. Niederhauser 15. Symposium Energieinnovation, February 16th 2018, TU Graz, Austria

butikofer de oliveira vernay architectes

Outline

- Description of the active PCM concept
- Testbed
 - Set-up
 - Measurements
 - Simulations

concept validation

- Simulations of a reference building
 - PCM of 23°C and 26°C with day and night loading
 - Active and passive PCM
- Conclusion and outlook

Active PCM concept

- Electrical battery can be charged and discharged at every moment
- Standard PCM (Phase Change Material):
 - can be loaded on demand (heating)
 - discharged as soon as $T_{int} < T_{c}$

• NEW CONCEPT

with on demand activation of the PCM discharge

Solution

Charge→Heating an insulated PCMStorage→PCM remains insulatedDischarge→Ventilation of the PCM

Concept of a ventilated PCM wall

- Heating with a water circuit
- Discharging with an air flow
- PCM:
 - micronal encapsulated paraffin with $T_c = 23/26$ °C

- in «Lehmorange» plates
- Advantage:
 - discharge can be controlled
 - wall can be furnished

Testbed: PCM wall in the middle of two rooms

heating system ~

PCM-Plate

ENERGY Institute of Applied Research in Energy Systems

Smart PCM Walls : Simulation results

External and box temperatures

Smart PCM Walls : Comparison Measures-Simulations

Simulations of a reference building

- **Goal**: increase the building autonomy and assure comfort temperature during ٠ building occupancy
 - 4 states: Loading: Heat pump on without ventilation Thermal state Storage: no heating and no ventilation ٠ **Discharge:** Ventilation (heat pump off) • Heating: Heat pump on with ventilation • Time: 12 6 comfort

•

18

temperature

24

• **Goal**: increase the building autonomy and assure comfort temperature during building occupancy

Time:

- 4 states:
 - Loading: Heat pump on without ventilation
 - Storage: no heating and no ventilation
 - Discharge: Ventilation (heat pump off)
 - Heating: Heat pump on with ventilation

• **Goal**: increase the building autonomy and assure comfort temperature during building occupancy

Ventilation

- Loading: Heat pump on without ventilation
- Storage: no heating and no ventilation
- Discharge: Ventilation (heat pump off)
 - Heating: Heat pump on with ventilation

Goal: increase the building autonomy and assure comfort temperature during ٠ building occupancy

Ventilation

• 4 states:

- Loading: Heat pump on without ventilation ٠
- **Storage**: no heating and no ventilation •
- **Discharge:** Ventilation (heat pump off)
- Heating: Heat pump on with ventilation

Thermal state

Simplified simulations

- T_{ext} constant the whole day all around the building
- Solar heating inside the building and wind effect are neglected
- U-value = $0.15 \text{ W/m}^2\text{K}$ for the building envelope
- Comfort temperature of about 20.5°C between 06h and 17h30
- Air renewal: 0.5 Vol/hour from 7h to 18h with 90% heat recovery
- PCM loaded with 12kW either during the day or night
 - day: from 9h30 to 16h
 night: before 6h
 but no more than 6h30
- Simulation performed from **6h to 6h the next day** with goals:
 - recover the same temperatures: T_{int} , $T_{concrete}$, T_{PCM} and the same PCM loading
 - in case of insufficient heating time \rightarrow study the drops of T_{int} , $T_{concrete}$, T_{PCM} and PCM loading

Day loading:

PV panels \rightarrow Heat pump: 12KW \rightarrow PCM

Day loading simulation result

T _{PCM board} T _{air int}

PCM discharge:

- T_c=23°C → comfort temperature until T_{ext} = -10°C
- T_c=26°C → comfort temperature until T_{ext} = - 5°C
- superiority of 23°C PCM due to lower overnight discharge than 26°C PCM

Night loading:

Electricity Network \rightarrow Heat pump: 12KW \rightarrow PCM

Night loading simulation results

ENERGY Institute of Applied Research in Energy Systems

Night loading simulation result

- Both PCM: $T_c=23^{\circ}C$ and $T_c=26^{\circ}C$ allow to maintain comfort temperature until $T_{ext} = -5^{\circ}C$
- Night loading requires a larger storage capacity than day loading due to large time-lag between PCM charge and discharge

Passive versus active PCM comparison

day loading, $T_{ext} = 0^{\circ}C$

passive PCM 23°C

active PCM 23°C

Conclusion

- Concept of active PCM walls for heating validated by lab tests and simulations:
 - + 5°C in 40mn
 - Studied system suitable for outdoor temperatures between -5°C and +10°C
- PCM with T_c =23°C has higher performances compared to 26°C (due to lower overnight discharge) but requires ventilation
- **Day loading** requires lower storage capacity than night loading (due to lower heating-loading time-lag)
- Active PCM has lower heat losses at night time than passive PCM (continuous natural convection)

PERSPECTIVES and OUTLOOK

- For very cold days: combination of day solar power

 + the necessary night loading defined after weather forecast
- PCM with T_c of 23°C can also provide cooling
- Integration in real building / demonstrator

Thank you for your attention!

Questions?

Back-up slides

PCM loaded at 06:00 am / at 16:00 pm

with latent heat in a single step

PCM loaded at 06:00 am / at 16:00 pm

